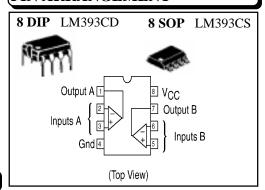


DUAL DIFFERENTIAL COMPARATORS


The LM393 dual differential comparator is made up of two voltage comparators that operate using the same power supply. THe supply voltage can range from 2 to 36 volts.

FEATURES

- Single or dual supplies
- 2 to 36 V Supply
- Low Input Bias Current
- Low Input Offset Voltage
- Low Input Offset Current
- Low Supply Current Drain
- Output Compatible with TTL, MOS, and CMOS

Dual supplies can also be used as long as the difference between them is 2 to 36 volts. The LM393 is designed to operate at a temperature range of 0°C to 70°C.

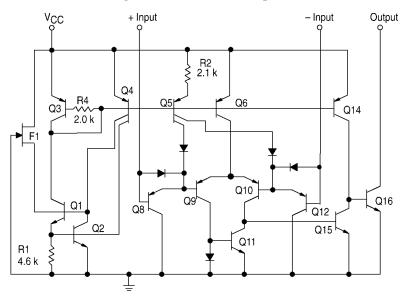
PIN ARRANGEMENT

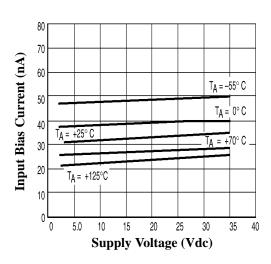
ABSOLUTE MAXIMUM RATINGS

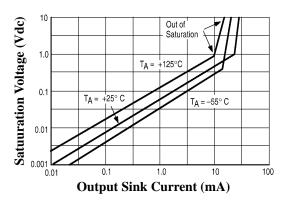
Item	Symbol	Rating	Unit
Power Supply Voltage	V_{cc}	+36 or <u>+</u> 18	V
Input Differential Voltage Range	$V_{_{\mathrm{IDR}}}$	36	V
Input Common Mode Voltage Range	V _{ICR}	-0.3 to +36	V
Output Short Circuit-to-Ground Output Sink Current (1)	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	Continuous 20	mA
Power Dissipation @ 25°C Derate above 25°C	$P_{\rm D}$ $1/R_{\rm \theta JA}$	570 5.7	mW mW/°C
Operating Ambient Temperature Range	T _A	0 to 70	°C
Operating Junction Temperature	$T_{_{\mathrm{J}}}$	125	°C
Storage Temperature Range	T_{s}	-65 to 150	°C

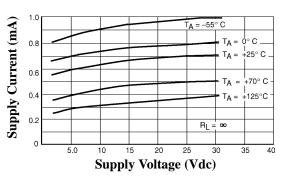
Notes: 1. The max. output current may be as high as 20 mA, independent of the magnitude of V_{CC} , output short circuits to V_{CC} can cause excessive heating and eventual destruction.

- 2. At output switch point, V $_{0}$ = 1.4 Vdc, R $_{S}$ = 0 Ω with V $_{CC}$ from 5.0 Vdc to 30 Vdc, and over the full input common mode range (0V to V $_{CC}$ = -1.5V).
- 3. Due to the PNP transistor inputs, bias current will flow out of the inputs. This current is essentially constant, independent of the output state, therefore, no loading changes will exist on the input lines.
- 4. Input common mode of either input should not be permitted to go more than 0.3V negative of ground or minus supply. The upper limit of common mode range is $V_{\rm CC}$ –1.5V.
- 5. Response time is specified with a 100mV step and 5.0mV of overdrive. With larger magnitudes of overdrive faster response times are obtainable.
- 6. The comparator will exhibit proper output state if one of the inputs becomes greater than $V_{\rm CC}$, the other input must remain within the common mode range. The low input state must not be less than -0.3V of ground or minus supply.

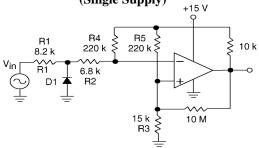

ELECTRICAL CHARACTERISTICS


 $V_{CC} = 5.0 Vdc, 0^{\circ}C \le T_A \le 70^{\circ}C$ (unless otherwise noted)


Item	Symbol	Min	Тур	Max	Unit
Input Offset Voltage (2)	V _{IO}				mV
$T_A = 25^{\circ}C$			1.0	5.0	
0° C \leq T _A \leq 70° C				9.0	
Input Offset Current	I _{IO}				nA
$T_A = 25^{\circ}C$			5.0	50	
0° C \leq T _A \leq 70° C				150	
Input Offset Current (3)	$I_{_{\mathrm{IB}}}$				nA
$T_A = 25^{\circ}C$			25	250	
0° C \leq T _A \leq 70° C				400	
Input Common Mode Voltage Range (3)	V _{ICR}				V
$T_A = 25^{\circ}C$	ICK	0		V _{CC} -1.5	
$0^{\circ}C \leq T_{A} \leq 70^{\circ}C$		0		V _{cc} -2.0	
Voltage Gain	A _{VOL}	50	200		V/mV
$R_L \ge 15K$, $V_{CC} = 15 \text{ Vdc}$	VOL				
$T_{\Lambda} = 25^{\circ}C$					
Large Signal Response Time			300		ns
Vin = TTL Logic Swing.					
Vref = 1.4 Vdc					
VRL = 5.0 Vdc, RL = 5.1 K					
$T_{\Delta} = 25^{\circ}C$					
Response Time (5)	t _{TLH}		13		μs
VRL = 5.0 Vdc, RL = 5.1K	TLH				P
$T_{\Lambda} = 25^{\circ}C$					
Input Differential Voltage (6)	V _{ID}			V _{CC}	V
All Vin \geq GND or V-Supply	, ID			, cc	·
(if used)					
Output Sink Current	Ţ	6.0	16		mA
Vin- ≥ 1.0 Vdc, Vin+ = 0 Vdc	I_{Sink}	0.0	10		1112 1
Vo \leq 1.5 Vdc, $T_A = 25^{\circ}C$					
Output Saturation Voltage	V _{OL}				mV
Vin- \geq 1.0 Vdc, Vin+ = 0 Vdc	OL		150	400	111 1
$I_{Sink} \le 4.0 \text{ mA}, T_A = 25^{\circ}\text{C}$			150	400	
$1_{\text{Sink}} \le 4.0 \text{ m/s}, 1_{\text{A}} = 23 \text{ C}$ $0^{\circ}\text{C} \le T_{\text{A}} \le 70^{\circ}\text{C}$				700	
Output Leakage Current	l T			700	nA
Vin- = 0 Vdc, Vin+ \geq 1.0 Vdc	I_{OL}		0.1		пл
Vo = 5.0 Vdc, $T_A = 25^{\circ}C$			0.1		
$V_0 = 3.0 \text{ Vdc}, T_A = 23 \text{ C}$ $V_{11} = 0 \text{ Vdc}, V_{11} + \ge 1.0 \text{ Vdc}$				1000	
				1000	
Vo = 30 Vdc, 0° C \leq T _A \leq 70 $^{\circ}$ C Supply Current	l T				mA
·	L_{cc}		0.4	1.0	IIIA
$R_L = \infty$, $T_A = 25^{\circ}C$ $R_L = \infty$, $V_{CC} = 30 \text{ V}$			0.4	2.5	
$N_1 - \infty$, $V_{CC} - 30$ V	I			_ ∠.J	I



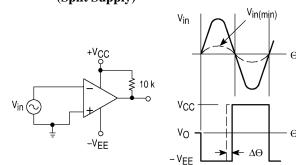
CIRCUIT SCHEMATIC (Diagram shown is for 1 comparator)


APPLICATIONS INFORMATION

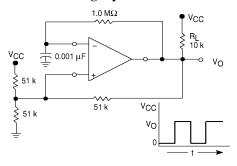
These dual comparators feature high gain, wide bandwidth characteristics. This gives the device oscillation tendencies if the outputs are capacitively coupled to the inputs via stray capacitance. This oscillation manifests itself during output transitions (V_{OL} to V_{OH}). To alleviate this situation, input resistors <10 k Ω should be used.

The addition of positive feedback (< 10 mV) is also recommended. It is good design practice to ground all unused pins.

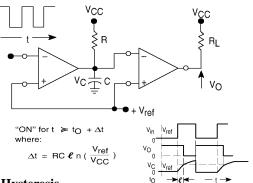
Differential input voltages may be larger than supply voltage without damaging the comparator's inputs. Voltages more negative than -0.3 V should not be used.


Zero Crossing Detector (Single Supply)

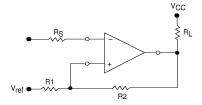
D1 prevents input from going negative by more than 0.6 V. R1 + R2 = R3


 $R3 \le \frac{R5}{10}$ for small error in zero crossing.

Zero Crossing Detector (Split Supply)



 $V_{in(min)} \approx$ 0.4 V peak for 1% phase distortion ($\Delta\Theta$).


Free-Running Square Wave Oscillator

Time Delay Generator

Comparator With Hysteresis

$$R_S = R1 | I | R2$$

$$(VCC - V_{ref}) | R1$$

$$V_{th2} = V_{ref} - \frac{(V_{ref} - V_O Low) R1}{R1 + R2}$$